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A ring R is (right) primitive provided it has a faithful irreducible (right) R-module. If
non-trivial group G is finite or abelian, then the group algebra KG over a field K cannot be
primitive. If G has non-abelian free subgroups, then KG is often primitive. In the present note,
we focus on a local property which is often satisfied by groups with non-abelian free subgroups:

(x) For each subset M of G consisting of finite number of elements not equal to 1,
there exist three distinct elements a,b, ¢ in G such that whenever z; € {a,b, c}
and (z7 g121) -+ (2, gmam) = 1 for some g; € M, x; = x4, for some i.

We can see that the group algebra KG of a group G over a field K is primitive provided G
has a free subgroup with the same cardinality as G and satisfies (x). In particular, for every
countably infinite group G satisfying (%), KG is primitive for any field K. As an application of
this theorem, we can see primitivity of group algebras of many kinds of groups with non-abelian
free subgroups which includes a recent result; the primitivity of group algebras of one relator

groups with torsion.

1 A brief history of the research

Let R be a ring with the identity element. It need not to be commutative. A
ring R is right primitive if and only if there exists a faithful irreducible right R-
module Mg, where My is irreducible provided it has no non-trivial submodules,
and Mpg is faithful provided the annihilator of M is zero: ann(Mg) = {r €
R | Mr = 0} = 0. The above definition of primitivity is equivalent to the
following: A ring R is right primitive if and only if there exists a maximal right
ideal p which contains no non-trivial ideals of R. A left primitive ring is similarly
defined. In what follows, for right primitive, we simply call it primitive. Speaking
of a group ring, a right primitive group ring is always left primitive. In this section,
we introduce briefly a history of the research to primitivity of group rings.

Since the group ring KG of a non-trivial group G over a field K has always
the augmentation ideal which is non-trivial, it cannot be a simple ring. If G is a
finite group, then K G is a finite dimensional algebra and so it is never primitive
because a finite dimensional algebra is simple provided it is primitive. Moreover,
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if a commutative ring is primitive, then it is a field, and therefore if G # 1 is
abelian, then K G is never primitive. Hence primitivity of KG is appeared only in
the case that G is non-abelian and non-finite. For the longest time no examples
of primitive group rings were known, and it was thought that K'G could not be
primitive provided G # 1.

The first example of primitive group rings was offered by Formanek and Snider
[7] in 1972, and in 1973 Formanek [6] gave the primitivity of group rings of well-
known groups; namely the primitivity of group rings of free products.

Theorem 1.1. (Formanek[6]) Let G be a free product of non-trivial groups (
except G = Lo * Zs); Then KG is primitive for any field K.

In particular, if G is a free group then KG is primitive for any field K. After
that, many examples of primitive group rings were constructed. In 1978, Do-
manov [4], Farkas-Passman [5] and Roseblade [17] gave the complete solution for
primitivity of group rings of polycyclic-by-finite groups.

Theorem 1.2. (Domanov[4], Farkas-Passman[5],Roseblade[17]) Let G be a non-
trivial polycyclic-by-finite group. Then KG is primitive if and only if A(G) =1
and K is non-absolute, where A(G) = {g € G | [G : Cs(g)] < oo} and K is
absolute if it is algebraic over a finite field.

Polycyclic-by-finite groups are belong to the class of noetherian groups, and it
is not easy to find a noetherian group which is not polycyclic-by-finite [15]. There-
fore almost all other known infinite groups belong to the class of non-noetherian
groups. As is well known, if KG is noetherian then G is also noetherian, but
the converse is not true generally. A group of the class of finitely generated
non-noetherian groups has often non-abelian free subgroups; for instance, a free
group, a locally free group, a free product, an amalgamated free product, an
HNN-extension, a Fuchsian group, a one relator group, etc. It is known that a
free Burnside group is not the case, though. After the result Theorem 1.1 above,
primitivity of group rings of known groups which are non-noetherian has been
obtained gradually. Theorem 1.1 was generalized to one for amalgamated free
products by Balogun in 1989:

Theorem 1.3. ([1, Balogun, '89]) Let G = A %y B be the free product of A and
B with H amalgamated. If there exist elements a € A\ H and b € B\ H such
that a®>,0> ¢ H, a 'HaNH =1 and b"*HbN H = 1, then KG is primitive for
any field K.

In 1997, the primitivity of semigroup algebras of free products was given by
Chaudhry, Crabb and McGregor [2].



The primitivity of a group ring of a free group F' extended to one for the
ascending HNN extension G = F, of a free group F'; for the case of [F| = N in
2007 and for the case of arbitrary cardinality of F'in 2011:

Theorem 1.4. ([13, Nishinaka, ’07], [14, Nishinaka, ’11]) Let F' be a non-abelian
free group, and G = F, the ascending HNN extension of F' determined by .
Then the following are equivalent:

(1) KG is primitive for a field K.

(2) |K| < |F| or G is not virtually the direct product F X Z.

(3) |K| < |F| or AG) = 1.

In particular, if G is a strictly ascending HNN extension, that is, o(F') # F,
then KG is primitive for any field K.

Moreover, the primitivity of group rings of free groups extended to one for
locally free groups:

Theorem 1.5. ([14, Nishinaka, '11]) Let G be a non-abelian locally free group
which has a free subgroup whose cardinality is the same as that of G itself. If K
15 a field then KG is primitive.

In particular, every group ring of the union of an ascending sequence of non-
abelian free groups over a field is primitive, and so every group ring of a countable
non-abelian locally free group over a field is primitive.

Now, there is no viable conjecture as to when K G is primitive for arbitrary

groups. There exists a non-primitive KG for any field K even in the case that
KG@G is semiprimitive and A(G) =1 (See [3]).

2 Group algebras of groups with free subgroups

In the present note, we focus on a local property which is often satisfied by
groups with non-abelian free subgroups:

(%) For each subset M of G consisting of finite number of elements not
equal to 1, there exist three distinct elements a, b, ¢ in G such that
whenever z; € {a,b,c} and (z7'g1z1) - (2, gmam) = 1 for some
gi € M, x; = x;,1 for some 1.

We can see that if G is countably infinite group and satisfies (x), then KG is
primitive for any field K. More generally, we can get the following theorem:

Theorem 2.1. Let G be a non-trivial group which has a free subgroup whose
cardinality is the same as that of G. Suppose that G satisfies the condition (). If
R is a domain with |R| < |G|, then the group ring RG of G over R is primitive.



In particular, the group algebra KG is primitive for any field K.

As an application of the theorem, we give the primitivity of group algebras of
one relator groups with torsion:

Theorem 2.2. If G is a non-cyclic one relator group with torsion, then KG 1is
primitive for any field K.

One of the main method to prove Theorem 2.1 is a graph theoretic method
which is called SR-~graph theory.

3 SR-graph theory

Let G = (V, E) denote a simple graph; a finite undirected graph which has no
multiple edges or loops, where V' is the set of vertices and F is the set of edges. A
finite sequence vpe v, - - - €,v, Whose terms are alternately elements e;’s in £ and
v,'s in V' is called a path of length p in G if v, # v, for any ¢,¢ € {0,1,---,p}
with ¢ # ¢/; it is often simply denoted by vyv; - - - v,. Two vertices v and w of G
are said to be connected if there exists a path from v to w in G. Connection is an
equivalence relation on V', and so there exists a decomposition of V' into subsets
Ci’s (1 <i < m) for some m > 0 such that v,w € V are connected if and only if
both v and w belong to the same set C;. The subgraph (C;, E;) of G generated
by C; is called a (connected) component of G. Any graph is a disjoint union of
components. For v € V| we denote by C(v) the component of G which contains
the vertex v.

We define a graph which has two distinct edge sets E and F' on the same vertex
set V. We call such a triple (V, E, F') an SR-graph provided that (V, FUF) is a
simple graph (i.e. a finite undirected graph which has no multiple edges or loops)
and every component of the graph (V| E') is a complete graph (see Fig 1 and Fig
2). That is, we define an SR-graph as follows:

Definition 3.1. Let G = (V, E) and H = (V, F) be simple graphs with the same
vertex set V.. Forv € V, let U(v) be the set consisting of all neighbours of v in H
and v itself: U(v) ={w eV | vw € F}U{v}. A triple (V,E, F) is an SR-graph
(for a sprint relay like graph) if it satisfies the following conditions:

(SR1) For anyv eV, C(v)NU(v) = {v}.

(SR2) Every component of G is a complete graph.

If G has no isolated vertices, that is, if v € V then vw € E for some w € V, then
SR-graph (V, E, F) is called a proper SR-graph.



We call U(v) the SR-neighbour set of v € V| and set (V) = {U(v) | v € V}.
For v,w € V with v # w, it may happen that U(v) = U(w), and so [{U(V)]| < |V|
generally. Let S = (V, E, F) be an SR-graph. We say S is connected if the graph
(V, E'UF) is connected.
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Fig 1. Anexampleof an SR-graph: bold solid Fig 2. Prohibits: It is not
lines are edgesin E and normal solid lines are: allowed to exist the above
edges in F. Sequences(e,, f;, €,, f2, e, ., ), (e, subgraph in an SR-graph.

Jzesfpe, ) and (e, f,, e, f,) are SR-cycles.

Definition 3.2. Let S = (V,E,F) be an SR-graph and p > 1. Then a path
VIW1VaWa, - -+, UpWyUpt1 1 the graph (V,E U F) is called a SR-path of length
p in S if either eg = vyw, € E and f; = wyvge1 € F or f = vywy, € F
and e, = wevg1 € E for 1 < q < p; simply denoted by (e, f1,---,ep, fp) or
(fi,e1,---, fp €p), respectively. If, in addition, it is a cycle in (V, EUF); namely,
Upy1 = U1, then it is an SR-cycle of length p in S.

To prove Theorem 2.1, we use some results for SR-graphs and apply them to
the Formanek’s method. We can give Formanek’s method, as follows:

Proposition 3.3. (See [6]) Let RG be the group ring of a group G over a ring
R with identity. If for each non-zero a € RG, there exists an element €(a) in the
ideal RGaRG generated by a such that the right ideal p =3 g 0y (€(@) + 1) RG
is proper; namely, p # RG, then RG is primitive.

The main difficulty here is how to choose elements e(a)’s so as to make p
be proper. Now, p is proper if and only if » # 1 for all » € p. Since p is
generated by the elements of form (e(a) + 1) with a # 0, r has the presentation,
r = (apen(E(a) + 1)b, where II is a subset which consists of finite number of
elements of RG x RG both of whose components are non-zero. Moreover, €(a)
and b are linear combinations of elements of G, and so we have

r= > Y (agBugh+ Buh), (1)

(a,b)€EIl g€Sa,heT,



where S, and T}, are the support of (a) and b respectively and both «, and 3,
are elements in K. In the above presentation (1), if there exists gh such that
gh # 1 and does not coincide with the other ¢’h”’s and h'’s, then r # 1 holds.
Strictly speaking: Let 4, = S, x Tp. If there exist (a,b) € II and (g, h) in Qg
with gh # 1 such that gh # ¢’h’ and gh # h' for any (c,d) € II and for any
(¢', 1) in Qeq with (¢', 1') # (g, h), then r # 1 holds.

On the contrary, if r = 1, then for each gh in (1) with gh # 1, there exists
another ¢’h’ or A" in (1) such that either gh = ¢’h’ or gh = h' holds. Suppose here
that there exist (goi—1,h:) and (g2, hiv1) (i =1,---,m) in V' = U, pen Qap U Ty
such that the following equations hold:

gihi = g2ho,
g3ha = gahs,

(2)
ng—lhm = 92mhm+1 and hm+1 = hy.

Eliminating h;’s in the above, we can see that these equations imply the equation
97 92 ggm_192m = 1. If we can choose £(a)’s so that their supports g;’s never
satisfy such an equation, then we can prove that » # 1 holds by contradiction.

We need therefore only to see when supports ¢’s of £(a)’s satisfy equations as
described in (2).

V= { gihj; h1| I;J}
— tedgesin E, ——edgesin F.

S=(V,E, F)

Fig 3. Equations as described in (2) for m=4.

Roughly speaking, we regard V' above as the set of vertices and for v = (g, h)
and w = (¢',h) in V, we take an element vw as an edge in E provided gh = ¢'h’
in G, and take vw as an edge in F provided g # ¢’ and h = b’ in G (see Fig 3). In
this situation, if there exists an SR-cycle vjwivows, - - -, v,wyv; in the SR-graph
(V, E, F') whose adjacent terms are alternately elements v;w; in £ and w;v; 41 in
F, then there exist (g;, h;)’s in V satistying the desired equations as described in
(2). Thus the problem can be reduced to find an SR-cycle in a given SR-graph.

By making use of graph theoretic considerations, we can prove the following



theorems:

Theorem 3.4. Let S = (V, E, F) be an SR-graph and let wg and wr be, respec-
tively, the number of components of G = (V, E) and H = (V, F). Suppose that
every component of H = (V, F) is a complete graph and S is connected. Then S
has an SR-cycle if and only if wg + wp < |V| + 1.

In particular, if S is proper and o < vy then S has an SR-cycle.

Theorem 3.5. Let S = (V,E,F) be an SR-graph and €(V) = {Vi,---,V,,}
with n > 0. Suppose that every component H; = (Vi, F;) of H is a complete
k-partite graph with k > 1, where k is depend on H;. If |Vi| > 2u(H;) for each
i€ {l,---,n} and |Ig(V)| < n then S has an SR-cycle.

4 Proof of Theorem 2.1

Let G be a group and My, - - -, M,, non-empty subsets of G which do not include
the identity element. We say My, ---, M, are mutually reduced in G if for each
finite elements gy, - - -, g, in the union of M;’s, g1 --- g =1 implies both g; and
gi+1 are in the same M; for some ¢ and j. If M; = {xl Yoo, My, = {2t} and
they are mutually reduced, then we say simply zy, - - -, z,, are mutually reduced.

In this section, we shall prove Theorem 2.1 after preparing three lemmas.

Lemma 4.1. (See [16, Theorem 2|) Let K" be a field and G a group. If A(G)
is trivial and K'G is primitive, then for any field extension K of K', KG is
primitive.

By making use of Theorem 3.4 and Theorem 3.5, we can get the next two
lemmas:

Lemma 4.2. Let G be a non-trivial group, m > 0 and n > 0. For non-trivial
distinct elements f;;’s (i = 1,2,3, j =1,---,m) in G and for distinct elements
gi's(i=1,---,n)in G, we set

S =S, where S;={f;|1<j<m},

T ={g;]1<i<n},

V. =S5xT,

M ={f5" [ fu | 3.k ,m, j#k} (i=1,2,3),

I ={(f,9)eV| fg%f’ 2 for any (f',9') € V with (f',g') # (f,9)}-

Then if My, My and Ms are mutually reduced, then |I| > n.



Lemma 4.3. Let G be a non-trivial group and n > 0. For each 1 =1,2,---,n,
let fi1, -+, fim, be distinct m; > 0 elements of G; fip # fiq for p # q, and let x;;
(1 <i<n,1<j<3) be distinct elements in G. we set

U 1 SZ‘, ’U}h67“6 Sz = {fU | 1 S] S mi},

Uiy Xi, where X; = {zy; | 1 < j <3},

Ui, Vi, where V; = X; x S,

(e f) eV | af £of for any (2, ') € V with (2!, f) # (2. )}

If x;; s are mutually reduced elements, then |I| > m, where m = my + - - 4+ m,.

S 3
X 0
”
I

Proof of Theorem 2.1. Let B be the basis of a free subgroup of G whose car-
dinality is the same as that of G. Then we may assume that the cardinality of
B is also same as G, that is, |B| = |G|. In addition, since |R| < |G|, we have
that |B] = |RG|. We can divide B into three subsets By, By and Bj each of
whose cardinality is |B|. It is then obvious that the elements in B are mutually
reduced. Let ¢ be a bijection from B to RG \ {0} and o, a bijection from B to
B, s=1,23.

For b € B, let ¢(b) = >y, aff, where ay € R and Fj is the support of ¢(b).
We set

My={f*, [ | f.f €Ff# [}
Since G satisfies the condition (x), there exist 1, Zp2, Tp3 € G such that M =
{a [Flag, o [ f'ow | fof € Fy, f# '} (t=1,2,3) are mutually reduced.
We here define £(b) and &' (b) by
3 3

eb) =Y > ou(b)ay p(b)ay and £'(b) =£(b) + 1. (3)

s=1 t=1

Note that e(b) is an element in the ideal of RG generated by ¢(b). Let p =

> vep €' (b)RG be the right ideal generated by e'(b) for all b € B. If w € p, then
we can express w by

w=> By = (c(b)uy +w,) (4)

beA beA

for some non-empty finite subsets A of B and u;, in RG. In view of Proposition
3.3, in order to prove that RG is primitive, we need only show that p is proper;
p # RG. To do this, it suffices to show that w # 1.

Let up, = ZheHb Brh, where Hj is the support of u,. Substituting this and
@(b) = > cp, arf into (3), we obtain the following expression of e(b)uy:

3 3
e(b)up = Z Z Z Z o Brypsty, frph, where yps = o4(b). (5)

s=1 t=1 fGFb hEHb



In what follows, for the sake of convenience, we represent ybsxgtl fruh by
ysx; fash, and we note that y, and z; are depend on b € B. For s = 1,2,3,
we here set

3
Ebs = Z Z Z afﬁhys£($t7 fa h)7 where g(xb f7 h) = ‘T;lf‘rth' (6)

t=1 fer hEHb

That is, €(b)uy = Ey + Ep + Epz. We can see that there exist more than |H,|
isolated elements in the expression (6) of Ej for each s = 1,2, 3. Strictly speaking,
if we set Xb = {xl,l’g,l’g,}, Fb = Xb X Fb X Hb and

L= {(e, f,h) | (20, [ h) € T, €, £ 1) # &y, [/, 1)
for any (x,, f',h') € Ty with (x,, f', 1) # (x+, f, h)},
then |I5| > |Hp|. In fact, since M, (t = 1,2,3) are mutually reduced, it follows
from lemma 4.2 that || > |Hp|.
Now, we shall see that w # 1 holds, where w as in (4). In (4), we set that
wy =Y peq(b)uy and wo =Y, up. We have then that

3
w1 :ZZE”S and w = w; + ws.

beA s=1

Let Supp(Eys) be the support of E,s and my, = |Supp(Ey;)|. We should note that
|Supp(Eys)| = my, for all s = 1,2, 3. It is obvious that my, > ||, and so my > |Hy|
by the above. Since yps (b € A,1 < s < 3) are mutually reduced, by virtue of
Lemma 4.3, we have |Supp(w,)| > >, 4 msp. Moreover we have that

|Supp(w)| > |Supp(wy)| — [Supp(ws)|

> my— Y |H

beA beA
> 0,

which implies |Supp(w)| > 2. In particular, w # 1. We have thus seen that RG
is primitive.

Finally, we shall show that K G is primitive for any field K. Let K’ be a prime
field. Since G satisfies (%) and |K'| < |G|, we have already seen that K'G is
primitive. In view of Lemma 4.1, we need only show that A(G) = 1.

Let g be a non-identity element in G. We can see that there exist infinite
conjugate elements of ¢g. In fact, if it is not true, then the set M of conjugate
elements of g in G is a finite set. Since G satisfies (x), for M, there exists
21,72 € G such that M* and M* are mutually reduced. Since g is in M,
(z7 gzy) (x5 foy)™! # 1 for any f € M, and thus a7 gz, # oy frs. Hence
(w125 1) tg(a125t) # f for all f € M, which implies a contradiction x ‘gz & M,
where x = x5 . This completes the proof of theorem. O



We call the free product A x B of two non-identity groups A and B a strict
free product provided that it is not isomorphic to Zs x Zs. In addition, we define
a group G to be a locally strict free product if for each finite number of elements
g1, -+, gm in G, there exists a subgroup H of G which is isomorphic to a strict free
product such that {gi,---,9m} C H. The following corollary, which generalizes
the result of [6], follows from Theorem 2.1:

Corollary 4.4. Let R be a domain and G a locally strict free product. Suppose
that G has a free subgroup whose cardinality is the same as that of G. If |R| < |G|
then the group ring RG is primitive.

In particular, KG is primitive for any field K.

5 Proof of Theorem 2.2

Throughout this section, F' = (X) denotes the free group with a base X. Let
G = (X |R) denote the one relator group with the set of generators X with a
relation R, where R is a cyclically reduced word in F. For a word W in F, if
R=W" n>1and W is not a proper power in F, then G is called a one relator
group with torsion. Let W be a word in F'. We denote the normal closure of W
in F by Np(W). For a cyclically reduced word W, Wg(W) denotes the set of
all cyclically reduced conjugates of both W and WL, If W;, .-, W, are reduced
words in F' and W = W, - - - W, is also reduced, that is, there is no cancellation in
forming the product W;--- W, then we write W =W, ---W,. For Y C X, (Y)q
is the subgroup of GG generated by the homomorphic image in G of Y.

Lemma 5.1. Let n > 1, and let G = (X |R), where W be a cyclically reduced
word in I and R = W™".

(1) (See [18, Theorem], cf. [8]) If 1 #V € Np(R), then V contains a subword
S™1Sy, where S = Sy, € Wrp(W) and every generator which appears in W
appears in Sy.

(2) (See [12, Theorem]) The centralizer of every non-trivial element in G is a
cyclic group.

Lemma 5.2. Forn > 1, let G = (X | R) with |X| > 1, where R = W" and W
15 a cyclically reduced word in F.

(]) [fS,T g X, then <S>G N <T>G = <SﬂT>G.

(2) A(G) =1.

Proof. (1): If S C T or T C S, then the assertion is clear, and so we may
assume S Z T and T"Z S. It is obvious that (S)g N (T)g 2 (SN T)e. Suppose,
to the contrary, that (S)¢ N (T)g 2 (S NT)e. Then there exist reduced words

10



u=u(s,a,---,b)in (S)\(SNT) and v =v(t,c,---,d) in (T) \ (SNT) such that
uwv € Np(R), wherea,---,be€ S,¢,---,deT,se S\(SNT),and t € T\ (SNT).
Let w be the reduced word for uv, say w = ujv;, where u = ujus and v = u;lvl.
Then w = uv; € Np(R). However, u; involves s but not ¢, and v; involves ¢ but
not s, which contradicts the assertion of Lemma 5.1 (1).

(2): Suppose , to the contrary, A(G) # 1; thus there exists 1 # g € G such that
G : Cg(g)] < oo. By Lemma 5.1 (2), Ci(g) is cyclic and in fact infinite cyclic
because |G| is not finite. Thus G is virtually cyclic and so, as is well-known, there
exists a normal subgroup N of finite order such that G/N is isomorphic to either
the infinite cyclic group Z or the infinite dihedral group Zs * Zs (See [9, 137p]).

Since a one relator group with torsion is isomorphic to neither Z nor Zsy * Zs,
we may assume N # 1. In both cases of G/N ~ Z and G/N ~ Zy * Z, there
exists + € G\ N such that (x)¢ is a infinite cyclic subgroup of G. Since |N| is
finite, then it is easily seen that there exists m > 0 such that =™ fax™ = f for
all f € N, which implies N C Cg(2™); a contradiction, because a infinite cyclic
group does not contain non-trivial finite subgroups. O]

Let X = {z1,29, -+, 2y} with m > 1 and F' = (X). To avoid unnecessary
subscripts, we denote generators, xy,xs,- -, Tm, by t,a,---,b. We consider the
one relator group G = (X |R), where R = W™, n > 1and W = W(t,a,---,b)
is a cyclically reduced word which is not a proper power. We assume that all
generators appear in W. We shall see that there exists a normal subgroup L of
G such that G/L is cyclic and L satisfies the assumption in Corollary 4.4. That
is, G has the following type of subgroup G, and L is a subgroup of it:

G = (X | Ry, i € Z) with R; = W/ (n > 1), (7)

where Xoo = {a;,---,b; | j € Z} and for each i € Z, W, is a cyclically reduced
word in the free group F, = (X). Let o, ---, 5. be respectively the mini-
mum subscripts on a, - - -, b occurring in Wy, and let o*,---, * be the maximum
subscript on a, - - -, b occurring in Wy, respectively. That is,

Wi =Wilaa.+i,* Gartis 5 bgosis -+ bgegs).

Let 1 be the maximum number in {o* — ay, -+, 5% — B.}. For t € Z, we set
subgroups )y and P, of G, as follows:
( For p # 0,
Qt :<at+’i)“'abt+j’a*§i§&*7"'7B*§j§ﬁ*>Goo7
P =i, by | <i <o =1, -, B <j< B = 1a..
(8)
For p =0,
Qt - <at+a*7 e Y bt+ﬂ*>Goo7
\ Pt == 1

11



Then P, is a subgroup of ); and ); has the following presentation:

Qt = <at+a*a Ty Qiqary bt+ﬁ*7 e >bt+ﬁ* Rt> (9)

In what follows, let v = g* — B, and replacing the order of a;,---,b; in X if
necessary, we may assume that y =ao* —a, > --- > * — 5, = v. In view of the
Magnus’ method for Freiheitssatz, we may identify GG, as the union of the chain
of the following G;’s (see [11] or [10]):

G = Uiy Gi, where
Go=Qo, Ga2u=0Q *P i Gai—1, and Gaip1 = Gy *Piiq Qit1.

By lemma 5.2 (1), we can get the next lemma:

(10)

Lemma 5.3. If H is a subgroup of G generated by a finite subset Y of Xu;
namely H = (Y)q.., then there exists a positive integer t such that H C Gau_y)
and HN P, = 1.

Lemma 5.4. If G, and W; are as in (7), then for each finite number of elements
91,5 gm n G, there exists an integer t such that (g1, -, gm, Wi)a., is the free

product (gl, s ;gm>Goo * <Wt>Goo

Proof. Let Y be the subset of X, consisting of generators appeared in g; for
all i € {1,---,m}. By virtue of Lemma 5.3, for H = (Y)¢.__, there exists ¢ > 0
such that H C Gyy—1y and H NP, = 1.

Now, by (10), Ga—1 = Gaq—1)*p, Qi, where Q) is as described in (9) and P, is as
described in (8). Since W* = R; is the relator of Q;, we have (W;)¢ C Q. Asis
well known, W)™ # 11in @Q; for 1 < m < n. Moreover, it holds that P,N(W;)g, = 1.
In fact, if not so, there exists m > 0 such that W,” € P, in @);. Since P, is a
free subgroup of Q); by Freiheitssatz, we have that 1 # (W/™)" = (W;*)™ in Q.
However, this contradicts the fact that W;" is the relator of @);. We have thus
shown that P, N (W;)g, = 1. Combining this with H N P, = 1, we see that
<Y7 Wt>Gzt—1 = < >G2t 1 < >G2t , = H* <Wt> . Since <gl7 T 7gm>Goo C H, we
have that (g1, -, gm, Wi)aw = (91, Im) G, <Wt)gw. ]

Proof of Theorem 2.2 Let G = (X |R) be the one relator group with torsion,
where |X| > 1, R=W", n > 1and W is a cyclically reduced word which is not a
proper power. If there exists # € X such that W contains none of x or 27!, then
G is a non-trivial free product of groups both of which are not isomorphic to Zs.
Hence we may assume that X = {z1,---,2,} (m > 1) and W contains either
x; or x; " for all 4 € {1,---,m}. In this case, the cardinality of G is countable,
and it is well-known that G has a non-cyclic free subgroup. Moreover, by Lemma
5.2 (2), we see that A(G) = 1, and therefore, combining Corollary 4.4 with [19,
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Theorem 1], it suffices to show that there exists a normal subgroup L of G such
that G//L is cyclic and L satisfies the following condition (C'):

(C) For any g1, -, q € L, there exists a free product A x B in the
set of subgroups of L such that B # 1,a% # 1 for some a € A,
and g1,---,q, € Ax B.

There are now two cases to consider: whether or not the exponent sum o, (W)
of W on some generator x is zero.

If for each x € X, 0,(W) # 0, say o,,(W) = « and o,,(W) = (3, then by
the Magnus’ method for Freiheitssatz, G ~ (a”, xy,---, 2, | R*) C E, where
R* = (W*", W* = W*d®, x9,---,2,,) and E = (a,z9,--, 2, | R*). Let
N = Ng (0% 23+, 2,,), where F, = (a,2z2,--+,2,). Then we have that
N D Ng,(R*) and N/NE, (R*) ~ G, where G, is as in (7), and so we may
let Goo = N/Nx, (R*).

Let Fg = (a®, 29, -+, zy) and L = (NN Fg)/Np,(R*). Then we can easily see
that L can be isomorphically embedded in GG, and that G is a cyclic extension
of L.

Let g1,--+,9; (I > 0) be in L with g; # 1. In case of n > 2, since L C G,
by Lemma 5.4, there exists ¢ > 0 such that (g1, -, g1)a.. * (W )g... We have
then that 1 # Wy € L and (W;)? # 0 because n > 2, and so L satisfies the
condition (C). On the other hand, in case of n = 2, let p > 0 be the maximum
number such that either a?® or a7 is appeared in W* = W*(a®, z9,- -+, ).
Set v = aPtVPrya= P+t 5o that v € Fy. Moreover, since o,(v) = 0 and
04, (v) = 0, the homomorphic image T of v is contained in L. Suppose that
2 = 1; namely, v* € Np,(R*). In view of Lemma 5.2 (1), a reduced word v?
contains a subword 5,51.5p such that S5 is a cyclic shift of W* and Sy contains
all generators appeared in W*. Since only two letters a and x5 are appeared in
v?, we have that W* = W*(a”, z3). Moreover, 5,5, involves a subword of type
x5talzd? with |¢| < |pf|, where ; = £1. However, since |(p + 1)8| > |g|, there
exists no such subword in v?, which implies a contradiction. We have thus shown
that ©2 # 1. By virtue of Lemma 5.4, for gy, - -, g, and v, there exists ¢ > 0 such
that (U, g1, +, g)a., * (Wi)g.,. Since 1 # W; € L and v* # 1, we have thus
proved that L satisfies the condition (C).

If W has a zero exponent sum o, (W) on z for some x € X, say o,, (W) =0,
then we set N = Np(xg, x5+, 2,,) and L = N/Ng(R), where F' = (x1,xg, -+, Tp,),
R=Wm"and W = W(xy,--,x,). It is obvious that L ~ G, and G is a cyclic
extension of L. Moreover, we can easily see that L satisfies the condition (C).
This completes the proof of the theorem.
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