MULTIPLICATIVE SETS OF IDEMPOTENTS IN A SEMILOCAL RING

YASUYUKI HIRANO

Department of Mathematics, Naruto University of Education,
Naruto 772-8502, Japan

An element \(e \) of a ring \(R \) is called an idempotent if \(e^2 = e \). An idempotent \(e \) is said to be primitive if there are no two non-zero idempotent \(f, g \in R \) such that \(e = f + g \) and \(fg = gf = 0 \).

Proposition 1. Let \(K \) be a field of characteristic \(p \neq 2 \). Let \(R \) be a \(K \)-subalgebra of the ring \(M_n(K) \) of \(n \times n \) matrices over \(K \) containing matrix units \(e_{11}, e_{22}, \ldots, e_{nn} \). Let \(M \) denote the set consisting of primitive idempotents and \(0 \). Suppose that, for any \(e, f \in M \), \(ef \) is either an idempotent or a nilpotent element. Then \(R \) is isomorphic to a \(K \)-subalgebra of the ring \(T_n(K) \) of all upper triangular matrices over \(K \).

Proof. Assume that \(e_{ij}, e_{ji} \in R \) for some \(i \neq j \). Then \(R \) contain two primitive idempotents \(e = e_{ii} + e_{ij} \) and \(f = e_{ii} + e_{ji} \). We see that \(ef = 2e_{ii} \). Since \(\text{char}(K) \neq 2 \), \(2e_{ii} \) is neither an idempotent nor a nilpotent element. Hence, if \(e_{ij} \in R \) for some \(i \neq j \), then \(e_{ji} \not\in R \). Now we define an order on the set \(\{1, 2, \ldots, n\} \). If \(e_{ij} \in R \), then we define \(i \leq j \). Since \(e_{ii} \in R \) for all \(i \in \{1, 2, \ldots, n\} \), we have \(i \leq i \). If \(i \leq j \) and \(j \leq k \), then \(e_{ij}, e_{jk} \in R \), and hence \(e_{ik} = e_{ij}e_{jk} \in R \). Therefore \(i \leq k \). If \(i \leq j \) and \(j \leq i \), then \(e_{ij}, e_{ji} \in R \). As we saw in the first paragraph of the proof, \(i = j \) in this case. Therefore \(\leq \) is a partial order on \(\{1, 2, \ldots, n\} \). Let \(m \) be a minimal element of the ordered set \(\{1, 2, \ldots, n\} \). Then \(e_{mj} \not\in R \) for any \(j \neq m \). Renumbering the elements in \(\{1, 2, \ldots, n\} \), we may assume that \(m = 1 \).

Then we see \(R \subset e_{11}K + (e_{22} + \cdots + e_{nn})R(e_{22} + \cdots + e_{nn}) \). Using induction on \(n, (e_{22} + \cdots + e_{nn})R(e_{22} + \cdots + e_{nn}) \) is isomorphic to a \(K \)-subalgebra of the ring \(T_{n-1}(K) \). Hence \(R \) is isomorphic to a \(K \)-subalgebra of \(T_n(K) \).

Modified version of this article has been submitted elsewhere for publication.
The following example show that the proposition above is not true when the field K is of characteristic 2.

Example 1. Consider the ring $R = M_2(GF(2))$ of 2×2 matrices over the Galois field $GF(2)$ and let M denote the set consisting of all primitive idempotents in R and zero. We can easily see that for any $e, f \in M$, ef is either an idempotent or a nilpotent element.

Next, we prove the following.

Proposition 2. Let e be a primitive idempotent of a ring R. If ef is a non-zero idempotent of R for some element $f \in R$, then ef is a primitive idempotent.

Proof. Assume that $ef = a + b$ for some orthogonal idempotents $a, b \in R$. Then $a + b = ef = ea + eb$, and so $a = (a + b)a = (ea + eb)a = ca$. Similarly, we have $b = eb$. We can easily see that $e - ae$ and ae are orthogonal idempotents and $e = (e - ae) + ae$. Since e is a primitive idempotent, either $e = ae$ or $ae = 0$ holds. If $e = ae$, then $b = eb = aceb = ab = 0$. On the other hand, if $e = ae$, then $a = a^2 = aea = 0$. This proves that ef is primitive.

Let R be a ring. Let M and E denote the set consisting of all primitive idempotents in R and zero and the set of idempotents in R, respectively. If S is a multiplicatively closed set of idempotents in R containing 0, then $M \cap S$ is also multiplicatively closed.

By Zorn’s lemma, we have the following.

Proposition 3. Every multiplicatively closed subset of M (resp. E) is contained in a maximal multiplicatively closed subset of M (resp. E).

Example 2. Let $M_2(K)$ be a ring of 2×2 matrices over a field K. We can see that $(e_{11} + e_{12}K) \cup \{0\}$ is a maximal multiplicatively closed subset of M.

Theorem 1. Let R be a ring and let M denote the set consisting of all primitive idempotents in R and zero. Suppose that there are primitive orthogonal idempotents e_1, e_2, \cdots, e_n of R such that $1 = e_1 + e_2 + \cdots + e_n$. Then $\{0, e_1, e_2, \cdots, e_n\}$ is a maximal multiplicatively closed set in M.

Proof. Suppose, on the contrary, that there is a multiplicativity closed subset G of M which properly contains $\{0, e_1, e_2, \cdots, e_n\}$ and let $f \in G \setminus \{0, e_1, e_2, \cdots, e_n\}$. Since $e_1f e_2$ is a nilpotent element, $e_1f e_2$ must be 0. Similarly we have $e_1f e_i = 0$ for $i = 3, \ldots, n$. Hence we have $e_1f(1 - e_1) = e_1f e_2 + \cdots + e_1f e_n = 0$. Similarly we have $(1 - e_1)f e_1 = 0$. Therefore $e_1f = e_1f e_1 = fe_1$, that is e_1 and f are commutative.
By the same way, we can see that \(f \) and \(e_i \) are commutative for \(i = 2, \ldots, n \).
Now we can easily see that \(e_1 f, e_2 f, \ldots, e_n f \) are primitive orthogonal idempotents.
Since \(1 = e_1 f + \cdots + e_n f \) and since \(f \) is primitive, we conclude that \(f = e_i f \) for \(i \).
Since \(f \) and \(e_1 \) are commutative, \(e_1 f \) and \(e_1 (1 - f) \) are orthogonal idempotents.
Since \(e_1 = e_1 f + e_1 (1 - f) \) and since \(f \) is primitive, we see \(e_1 (1 - f) = 0 \). Then \(e_1 = e_1 f = f \), a contradiction.

Example 3. Consider the ring \(R = \mathbb{Z} + M_2(\mathbb{Q}[x]) \). \(R \) is an order of \(M_2(\mathbb{Q}[x]) \).
We can easily see that the idempotents of \(R \) are only 0 and 1.

Theorem 2. Let \(R \) be a ring and let \(M \) denote the set consisting of all primitive idempotents in \(R \) and zero. Suppose that 1 is a sum of primitive orthogonal idempotents. Then \(M \) is closed under multiplication if and only if \(R \) is a direct sum of rings with no non-trivial idempotents.

Proof. Suppose that \(M \) is closed under multiplication and that there are primitive orthogonal idempotents \(e_1, e_2, \ldots, e_n \) of \(R \) such that \(1 = e_1 + e_2 + \cdots + e_n \).
Since \(\{0, e_1, e_2, \cdots, e_n\} \) is a maximal multiplicatively closed set in \(M \) by Theorem 1, we conclude that \(M = \{0, e_1, e_2, \cdots, e_n\} \). Then \(e_1, e_2, \cdots, e_n \) are central orthogonal idempotents and \(R = e_1 R \oplus \cdots \oplus e_n R \). Since each \(e_i \) is primitive, each \(e_i R \) has no non-trivial idempotents.
In [2], D. Dolžan proved that \(M \) is closed under multiplication if and only if \(R \) is a direct sum of local rings ([2, Corollary 5.6]). Now we generalize this result to semiperfect rings. Let \(R \) denote a ring and \(J \) denote its Jacobson radical. A ring \(R \) is called semiperfect if \(R \) is semilocal and idempotents of \(R/J \) can be lifted to \(R \). All basic results concerning rings can be found in [1].
If \(R \) be a semiperfect ring, then there are primitive orthogonal idempotents \(e_1, e_2, \cdots, e_n \) of \(R \) such that \(1 = e_1 + e_2 + \cdots + e_n \) and each \(e_i R e_i \) is a local ring.
Hence we have the following.

Corollary 1. Let \(R \) be a semiperfect ring and \(M \) be the set of all minimal idempotents and zero in \(R \). Then the set \(M \) is closed under multiplication if and only if \(R \) is a direct sum of local rings.

Let \([M]\) denote the set \(\{eR \mid e \in M\} \), that is, \([M]\) is the set of right ideals of the form \(eR \) for some primitive idempotent \(e \) and the ideal 0.

Theorem 3. Let \(R \) be a semiperfect ring and \([M]\) be the set of right ideals of the form \(eR \) for some primitive idempotent \(e \) and the ideal 0. Then the set \([M]\) is closed under multiplication if and only if \(R \) is a finite direct sum of matrix rings over some local ring.
Proof. If R is a finite direct sum of matrix ring over some local ring, then clearly M is closed under multiplication. Let e and f be two primitive idempotents of R. Then either $eRfR = 0$ or $eRfR = gR$ for some primitive idempotent $g \in R$. If $eRfR = 0$, then $(fReR)^2 = 0$. In this case $fReR$ is not a nonzero direct summand of R, and so we conclude that $fReR = 0$. If $eRfR = gR$ for some primitive idempotent $g \in R$, then $eR \supseteq gR$. Using modular law, we have $eR = eR \cap (gR \oplus (1 - g)R) = gR \oplus eR \cap (1 - g)R$. Since eR is indecomposable, we conclude that $gR = eR$. Thus $eRfR = eR$, and so $eRfRe = eRe$. Then we can write $e = \sum_{i=1}^{n} ea_i fb_i e$ for some $a_i, b_i \in R$. Since eRe is a local ring, for some k, $ea_k fb_k e$ is invertible in eRe. Similarly there exists $c, d \in R$ such that $fcedf$ is invertible in fRf. These mean that $eR \cong fR$. Since R is semiperfect, $R = e_1 R \oplus \cdots \oplus e_n R$ for some primitive idempotents e_1, \cdots, e_n. By the fact proved above, $R = R_1 \oplus \cdots \oplus R_m$ such that each two-sided ideal R_i is a finite direct sum of isomorphic indecomposable models. Then $R \cong \text{End}(R_1) \oplus \cdots \oplus \text{End}(R_m)$. Thus each $R_i \cong \text{End}(R_i)$ is a matrix ring over a local ring.

References